

Forest Health in Europe

Johannes Eichhorn

Northwest German Forest Research Station

a Life+ co-financed project for the "Further Development and Implementation of an EU-level Forest Monitoring System".

The project coordination centre is situated at the Institute for World Forestry, Hamburg, Germany.

Aims of presentation

Inform on

- the relevance of forest health assessments in future
- concept of forest health assessments and its methodological progress
- contributions to the challenge of climate change
- the need of scientific collaboration between Level I and Level II
- options for decision support for forest management

Sustainability Each time has its own needs

v Carlowitz	Hartig	Oswald	Speidel	MCPFE
Concept	Wood production	Revenues	Multi function	Sustainable forest management

1713 1804 1931 1972 2003

Criteria and indicators of sustainability Forest Europe (MCPFE, 2003)

I Forest Resources	II Health and vitality	III Productive functions	IV Biological diversity	V Protective functions	VI Socio- economy
Forest area	Depositon of air pollutants	Increment & production	Tree species cmposition	Protective forests (soil, water)	Forest owners
Growing stock	Soil chemistry	Round timber	Regeneration	Protective forests (climate)	Contribution to GDP
Age	Defoliation	Non-wood products	Naturalprocesses		Net income
Carbon stock	Damaging agents	Forest services	Deadwood		Capital assets
			Genetic ressurces		Workforce & safety
			Endangered plant species		Trade
			Landscape diversity		Renewable energy
			Conservation of biodiversity		Recycling of paper products
					Recreation
					Culture

Forest Health & tree vitality Resilience

Growth (height, diameter)	Foliage density	Discolouration
Fruiting and reproduction	Mortality	Biotic and abiotic agents

Resilience is the long-term capacity of a system to deal with change and continue to develop.

Forest Health & tree vitality Manual

Pinus sylvestris: defoliation in 2009 http://www.forest-data.org/futmon/webgis

MANUAL

Of

methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests

Part IV

Visual Assessment of Crown Condition and Damaging Agents

updated: 05/2010

Climate change A challenge to be mastered

Projections for central Europe: reduction of summer precipitation, increase of winter precipitation, increasing number of heat days comparable to 2003

Biological ecosystem condition:

- crown and tree condition, pests, diseases, mortality
- forest biomass, C-pools, growth
- phenology
- ground vegetation, species diversity
- competition, stability

Economical Impact (market of forest products, employees, owners...)

Tree vitality results combine systematical net (Level I) and intensive monitoring (Level II) information

Defoliation Fagus sylvatica 2004 vs. 2003

Fagus sylvatica: defoliation in 2004 compared to 2003 http://www.forest-data.org/futmon/webgis

Fagus sylvatica: C-allocation in 2003

compared to 1998 - 2002

Compartment	mean 1998-2002	2004
		Biomass in t ha -1 a -1
stem wood, branches	6,7	3,3
Foliage biomass	3,3	3,6
fruit compartments	1,8	4,6
sum	11,8	11,5

Annual mortality

Systematic net (Level 1); central European countries

Storms in 1990, 1992

Heat & drought in 2003

Picea abies mortality and bark beetles

Sudden changes in forest condition often related to abiotic/biotic damage.

Extensive tree health monitoring networks are useful in revealing the impacts of widespread biotic damage in boreal forests.

Nevalainen, S. et al. (2011)

Defoliators on Quercus robur

Crown defoliation and tree mortality Swiss Level I

Total number of assessed trees

Annual mortality in % (log scale)

Since annual mortality is a rare event (0,3 % per year, Europe), defoliation > 50 % is a good estimator for risk evaluations

(Dobbertin, 2011)

Fagus sylvatica and climatic water balance Multiple regression GAM, Level I Central Europe

s(Krs, 1.18)

Decreasing Beech vitality on sites if climatic water balance is more negative than -325

GAM models: Defoliation 03-07 f (age, CWB, AWC, soil nutrient supply, temperature, elevation, position, liming, exposition, stand structure). Adj. R2: 0,773; only age: Adj. R2: 0,49 Heuristic selection of variables G32: GAM VS f (stand age***; CWB**, crown distance ***)

Definition of tree specific drought risk

(sum available water capacity and climatic water balance)

Risk	Picea abies	Fagus sylvatica	Quercus robur
high	< -350	< -400	- 500
low	0 to - 116	0 to -134	0 to -166

Spellmann et al. 2011

Forest Health assessments

- quantify criteria and indicators of sustainable ecological forest development (time series of results)
- support quantitative and up-to-date information on forest risks. The management of forest risks is crucial to further develop the stability of forest ecosystems by way of example as a precondition for carbon sequestration and climate mitigation by forests in Europe.
- result as an example in site drought limits of tree species. The forest sector gains by results of forest health assessments decision support for sylviculture under changing climatic conditions: Tree species selection on given sites
- Forest health assessments contribute significantly to the European wide forest and nature information system.

Forest Health in Europe

Johannes.Eichhorn@nw-fva.de

Thank you for you attention