

Forest growth in relation to deposition and climate

Forest Growth in Actions IM, D1 and C1-Gro-2(AT)

Matthias Dobbertin

Swiss Federal Research Institute WSL

Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

a Life+ co-financed project for the "Further Development and Implementation of an EU-level Forest Monitoring System".

The project coordination centre is situated at the Institute for World Forestry, Hamburg, Germany.

- Importance of Forest Growth Monitoring
- Aims of the Work
- Periodic Growth on IM Plots
 - Effects of deposition, temperature
- Annual Growth on D1 Core Plots
 - Climate: The extreme summer drought of 2003
- Concluding Remarks

Forest Growth The importance of forest growth studies

- Forest growth mitigates the impact of climate change and air pollution
- Forest growth is affected by climate change and air pollution
- Forest growth is a good indicator of environmental changes that affect forests

- Forest Growth was believed to decline as part of the ,Waldsterben' (Ulrich 1979)
- Forest growth has increased in recent decades (Spiecker et al. 1996)
- Forests are now considered as substantial carbon sinks (Naburs et al. 2003)

Forest Growth Effects on forest growth controversial

- Nitrogen deposition thought to cause a large increase in carbon uptake of forests (Magnani et al. 2008)
- Others believed that N deposition will only result in a small C uptake (Nadelhofer et al. 1999)
- Europe-wide reduction in primary productivity of forests during 2003 (Ciais et al. 2005)

- How can measuring forest growth on intensive monitoring plots be used to answer some of the controversial questions?
- What kann it add to the existing national forest inventories?

Forest Growth Advantage of long-term monitoring

- Harmonised growth assessment with centrally stored data
- Larger plots with known forest management
- Other environmental variables measured on site
- => ideally for cause-effect measures

IM - Periodic measurements on all trees (mean plot size 0.25 ha)

- 5-year diameter growth (mm), height growth (dm),
- => basal area increment, volume increment, including removal and mortality, carbon uptake
- => stand density, top height, standing volume/biomass, species distribution, crown cover, different indices of structural diversity and competition and spatial distribution

Forest Growth

D1 – Permanent and continuous stem measurements on selected trees on core plots

- Manually Girth bands
 - Annual stem growth (1/10 mm)
 - Seasonal stem growth
- Electronic dendrometers
 - Daily radius changes (1/100 mm)
 - Temporal swelling and shrinking

Forest Growth Effects on forest growth indicators

Periodic (5-yr) measurements for effects of

- deposition
- temperature change
- general drought

Annual permanent growth measurements for effects of

- extreme climatic events
- biotic damages (insect outbreak)

Periodic Forest Growth

- **450 600**
- **600 800**
- **800 1310**

Periodic Forest Growth

Mean annual stem volume growth

Periodic Forest Growth

Environmental change and growth Modell Design

Assessment of the effect of environmental changes on growth (1st growth period):

- Use stand productivity (height at age 50), tree age and stand density to model potental volume growth with the help of yield tables
- Compare expected growth with actual 5 year growth and relate the difference to environmental factors
 - N and acidic deposition
 - Temperature deviation
 - Drought index

Environmental change and growth Effect of N deposition

N deposition increases growth when N in the soil is limited

Environmental change and growth The effect of N deposition

Tree species	Growth increase per 1 kg N
Norway spruce	+ 0.9 - 2.0 %
Scots pine	+ 1.0 - 1.1 %
Common beech	(+0.5 - 1.0%)
Oak spec.	(-0.4 - 1.6%)
All combined	+ 1.2 %

Environmental change and growth The effect of temperature

Increased temperature during the growth period increased growth!

Environmental change and growth Summary

Periodic volume growth on IM plots for first 5-year period

- increased with N deposition when N was not limited in the soil
- for 1 Kg N deposition per year on average growth increased by 1% or 15 - 30 kg C uptake per year
- increased when temperature during the vegetation period was above average
- did not show a negative trend with acidic deposition
- did not show a clear trend with calculated drought index

Environmental change and growth Limitations of periodic growth

The problem with periodic growth data is that specific extreme events cannot be identifed or quantified!

Effects of Extreme Climate

The Heat Summer of 2003

The Summer of 2003

Vegetation development in 2003 was less at low and more at high altitude!

Legend

MODIS Summer FPAR relative to mean (%)

Jolly et al. 2005

The Summer of 2003

Tree growth in 2003 increased with altitude in the Alps!

 $R^2 = 0.6801$

Vis

40

140

120

100

80

60

40

20

0

20

in % of 2002

2003

Growth in

The Summer of 2003

Drought and growth reduction on Swiss plots

Oth

80

Change in AET/PET March-August 2003 in % of 2002

60

Vor

Neu

Graf Pannatier et al., 2007

100

The Summer of 2003 Conclusions

- The summer 2003 had different effects on tree growth:
- At low altitude growth was reduced in the alps as a result of water limitations
- At high altitude growth increased or remaind the same as a result of warmer temperatures
- Growth reductions were higher for spruce (up to 75%) than for beech (up to 50%)

Forest growth in relation to deposition and climate Final Conclusions

- Forest growth on intensive monitoring plots can be used to identify which environmental factors are affecting forest growth and to quantify the relative effects
- Periodic plot-level growth and annualy measured tree growth can be used to identify the different underlying processes
- The results obtained can be used to model the effects under future scenarios.

Thank you for your attention!!